Graphoidal graphs and graphoidal digraphs: a generalization of line graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced label graphoidal graphs

Let G be a non-trivial, simple, finite, connected and undirected graph of order n and size m. An induced acyclic graphoidal decomposition (IAGD) of G is a collection ψ of non-trivial and internally disjoint induced paths in G such that each edge of G lies in exactly one path of ψ. For a labeling f : V → {1, 2, 3, . . . , n}, let ↑ Gf be the directed graph obtained by orienting the edges uv of G...

متن کامل

On Graphoidal Covers of Bicyclic Graphs

A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by η(G) or η. Also, If every me...

متن کامل

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

A generalization of zero-divisor graphs

In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AKCE International Journal of Graphs and Combinatorics

سال: 2020

ISSN: 0972-8600,2543-3474

DOI: 10.1080/09728600.2020.1832854